Кто впервые вычислил размер земного шара


Первые измерения размеров Земли, её окружности

Совершая путешествия из г. Александрии на юг, в г. Сиену (теперь Асуан), люди замечали, что там летом в тот день, когда солнце бывает всего выше на небе (день летнего солнцестояния — 21 или 22 июня), в полдень оно освещает дно глубоких колодцев, т. е. бывает как раз над головой, в зените. Вертикально стоящие столбы в этот момент не дают тени. В Александрии же и в этот день солнце в полдень не доходит до зенита, не освещает дна колодцев, предметы дают тень.

Эратосфен измерил, насколько полуденное солнце в Александрии отклонено от зенита, и получил величину, равную 7°12', что составляет 1 /50 окружности. Это ему удалось сделать при помощи прибора, называемого скафисом. Скафис представлял собой чашу в форме полушария. В центре ее отвесно укреплялась

Слева — определение высоты солнца скафисом. В центре — схема направления солнечных лучей: в Сиене они падают вертикально, в Александрии — под углом в 7°12'. Справа — направление солнечного луча в Сиене в момент летнего солнцестояния.

Скафис — древний прибор для определения высоты солнца над горизонтом (в разрезе).

игла. Тень от иглы падала на внутреннюю поверхность скафиса. Для измерения отклонения солнца от зенита (в градусах) на внутренней поверхности скафиса проводились окружности, помеченные цифрами. Если, например, тень доходила до окружности, помеченной цифрой 50, солнце стояло на 50° ниже зенита. Построив чертеж, Эратосфен совершенно правильно заключил, что Александрия отстоит от Сиены на 1 /50 окружности Земли. Чтобы узнать окружность Земли, оставалось измерить расстояние между Александрией и Сиеной и умножить его на 50. Это расстояние было определено по числу дней, которое тратили караваны верблюдов на переход между городами. В единицах того времени оно равнялось 5 тыс. стадий. Если 1 /50 окружности Земли равняется 5000 стадий, то вся окружность Земли равна 5000х50 = 250 000 стадий. В переводе на наши меры это расстояние приблизительно равно 39 500 км. Зная длину окружности, можно вычислить и величину радиуса Земли. Радиус всякой окружности в 6,283 раза меньше ее длины. Поэтому средний радиус Земли, по Эратосфену, оказался равным круглому числу — 6290 км, а диаметр — 12 580 км. Так Эратосфен нашел приблизительно размеры Земли, близкие к тем, которые определены точными приборами в наше время.

Как проверялась информация о форме и величине земли

После Эратосфена Киренского на протяжении многих столетий никто из ученых не пытался вновь измерить земную окружность. В XVII в. был изобретен надежный способ измерения больших расстояний на поверхности Земли — способ триангуляции (названный так от латинского слова «триангулюм» — треугольник). Этот способ удобен тем, что встречающиеся на пути препятствия — леса, реки, болота и т. п.— не мешают точному измерению больших расстояний. Измерение производится следующим образом: непосредственно на поверхности Земли очень точно измеряют расстояние между двумя близко расположенными точками А и В, из которых видны удаленные высокие предметы — холмы, башни, колокольни и т. п. Если из А и В через зрительную трубу можно разглядеть предмет, находящийся в точке С, то нетрудно измерить в точке А угол между направлениями АВ и АС, а в точке В — угол между ВА и ВС.

После этого по измеренной стороне АВ и двум углам при вершинах А и В можно построить треугольник АBС и, следовательно, найти длины сторон АС и ВС, т. е. расстояния от А до С и от В до С. Такое построение можно выполнить на бумаге, уменьшив все размеры в несколько раз или с помощью вычисления по правилам тригонометрии. Зная расстояние от В до С и наводя из этих точек зрительную трубу измерительного инструмента (теодолита) на предмет в какой-либо новой точке D, тем же путем измеряют расстояния от В до D и от С до D. Продолжая измерения, как бы покрывают часть поверхности Земли сетью треугольников: ABC, BCD и т. д. В каждом из них можно последовательно определить все стороны и углы (см. рис.). После того как измерена сторона АВ первого треугольника (базис), все дело сводится к измерению углов между двумя направлениями. Построив сеть треугольников, можно вычислить по правилам тригонометрии расстояние от вершины одного треугольника до вершины любого другого, как бы далеко друг от друга они ни находились. Так решается вопрос об измерении больших расстояний на поверхности Земли. Практическое применение способа триангуляции — дело далеко не простое. Эту работу могут выполнять только опытные наблюдатели, вооруженные очень точными угломерными инструментами. Обычно для наблюдений приходится сооружать специальные вышки. Работы такого рода поручаются особым экспедициям, которые продолжаются по нескольку месяцев и даже лет.

Способ триангуляции помог ученым уточнить знания о форме и величине Земли. Произошло это при следующих обстоятельствах.

Знаменитый английский ученый Ньютон (1643—1727) высказал мнение, что Земля не может иметь форму точного шара, потому что она вращается вокруг своей оси. Все частицы Земли находятся под влиянием центробежной силы (силы инерции), которая особенно велика

Если нам нужно измерить расстояние от А до D (при этом точку В не видно из точки А), то мы измеряем базис АВ и в треугольнике AВС измеряем углы, прилегающие к базису (a и b). По одной стороне и прилегающим к ней двум углам определяем расстояние АС и BС. Далее из точки С мы с помощью зрительной трубы измерительного инструмента находим точку D, видимую из точки С и точки B. В треугольнике CUB нам известна сторона СВ. Остается измерить прилегающие к пей углы, а затем определить расстояние DB. Зная расстояния DB u AB и угол между этими линиями, можно определить расстояние от А до D.

Схема триангуляции: АB — базис; BE — измеряемое расстояние.

у экватора и отсутствует у полюсов. Центробежная сила у экватора действует против силы тяжести и ослабляет ее. Равновесие между силой тяжести и центробежной силой было достигнуто тогда, когда земной шар у экватора «раздулся», а у полюсов «сплющился» и постепенно приобрел форму мандарина, или, выражаясь научным языком, сфероида.

Интересное открытие, сделанное в то же время, подтвердило предположение Ньютона.

В 1672 г. один французский астроном установил, что если точные часы перевезти из Парижа в Кайенну (в Южной Америке, вблизи экватора), то они начинают отставать на 2,5 минуты в сутки. Это отставание происходит потому, что маятник часов около экватора качается медленнее. Стало очевидно, что сила тяжести, которая заставляет маятник качаться, в Кайенне меньше, чем в Париже. Ньютон объяснил это тем, что на экваторе поверхность Земли находится дальше от ее центра, чем в Париже.

Французская академия наук решила проверить правильность рассуждений Ньютона. Если Земля имеет форму мандарина, то дуга меридиана размером в 1° должна удлиняться при приближении к полюсам. Оставалось при помощи триангуляции измерить длину дуги в 1° на разном расстоянии от экватора. Измерить дугу на севере и на юге Франции поручили директору Парижской обсерватории Джованни Кассини. Однако южная дуга у него получилась длиннее северной. Казалось, что Ньютон не прав: Земля не сплюснута, как мандарин, а вытянута подобно лимону.

Но Ньютон не отказался от своих выводов и уверял, что Кассини ошибся при измерениях. Между сторонниками теории «мандарина» и «лимона» разгорелся ученый спор, который длился 50 лет. После смерти Джованни Кассини его сын Жак, также директор Парижской обсерватории, чтобы защитить мнение своего отца, написал книгу, где доказывал, что по законам механики Земля должна быть вытянута, как лимон. Чтобы окончательно решить этот спор, Французская академия наук снарядила в 1735 г. одну экспедицию к экватору, другую — к северному полярному кругу.

Южная экспедиция проводила измерения в Перу. Для измерения была выбрана дуга меридиана длиной около 3° (330 км). Она пересекала экватор и проходила через ряд горных долин и высочайших горных хребтов Америки.

Работа экспедиции продолжалась восемь лет и была сопряжена с большими трудностями и опасностями. Однако ученые выполнили свою задачу: градус меридиана у экватора был измерен с очень большой точностью.

Северная экспедиция работала в Лапландии (так до начала XX в. называлась северная часть Скандинавского и западная часть Кольского полуостровов).

После сравнения результатов работы экспедиций выяснилось, что полярный градус длиннее экваториального. Следовательно, Кассини действительно ошибался, а Ньютон был прав, утверждая, что Земля имеет форму мандарина. Так кончился этот затянувшийся спор, и ученые признали правильность утверждений Ньютона.

В наше время существует особая наука — геодезия, которая занимается определением величины Земли при помощи точнейших измерений ее поверхности. Данные этих измерений позволили достаточно точно определить действительную фигуру Земли.

Геодезические работы по измерению Земли проводились и проводятся в различных странах. Такие работы выполнены и в нашей стране. Еще в прошлом веке русскими геодезистами была проделана очень точная работа по измерению «русско-скандинавской дуги меридиана» протяжением более 25°, т. е. длиной почти в 3 тыс. км. Ее назвали «дугой Струве» в честь основателя Пулковской обсерватории (под Ленинградом) Василия Яковлевича Струве, который задумал эту огромную работу и руководил ею.

Градусные измерения имеют большое практическое значение прежде всего для составления точных карт. Как на карте, так и на глобусе вы видите сеть меридианов — кругов, идущих через полюсы, и параллелей — кругов, параллельных плоскости земного экватора. Карта Земли не могла быть составлена без длительной и кропотливой работы геодезистов, определявших шаг за шагом на протяжении многих лет положение разных мест на земной поверхности и затем наносивших полученные результаты на сеть меридианов и параллелей. Чтобы иметь точные карты, требовалось знать действительную форму Земли.

Результаты измерений Струве и его сотрудников оказались очень важным вкладом в эту работу.

Впоследствии другие геодезисты с большой точностью измерили длины дуг меридианов и параллелей в разных местах земной поверхности. По этим дугам при помощи вычислений удалось определить длину поперечников Земли в плоскости экватора (экваториальный диаметр) и в направлении земной оси (полярный диаметр). Оказалось, что экваториальный диаметр длиннее полярного примерно на 42,8 км. Это еще раз подтвердило, что Земля сжата с полюсов. По последним данным советских ученых, полярная ось на 1 /298,3 короче экваториальной.

Допустим, мы хотели бы изобразить отклонение формы Земли от шара на глобусе с поперечником в 1 м. Если шар по экватору имеет поперечник точно 1 м, то его полярная ось должна быть всего лишь на 3,35 мм короче! Это столь малая величина, что на глаз ее нельзя обнаружить. Форма Земли, таким образом, очень мало отличается от шара.

Можно подумать, что неровности земной поверхности, и особенно горные вершины, высочайшая из которых Джомолунгма (Эверест) достигает почти 9 км, должны сильно искажать форму Земли. Однако это не так. В масштабе глобуса диаметром в 1 м девятикилометровая гора изобразится в виде прилипшей к нему песчинки диаметром около 3 /4мм. Разве только на ощупь, да и то с трудом, можно обнаружить этот выступ. А с той высоты, на которой летают наши корабли-спутники, его можно различить разве по черному пятнышку тени, отбрасываемой им при низком стоянии Солнца.

В наше время размеры и форма Земли очень точно определены учеными Ф. Н. Красовским, А. А. Изотовым и др. Вот числа, показывающие размер земного шара по измерениям этих ученых: длина экваториального диаметра — 12 756,5 км, длина полярного диаметра — 12 713,7 км.

Изучение пути, пройденного искусственными спутниками Земли, позволит определить величину силы тяжести в разных местах над поверхностью земного шара с такой точностью, которой нельзя было достигнуть никаким другим способом. Это в свою очередь позволит внести дальнейшее уточнение в наши знания о размерах и форме Земли.

Постепенное изменение формы земли

Однако, как удалось выяснить при помощи все тех же космических наблюдений и сделанных на их базе специальных вычислений, геоид имеет сложный вид вследствие вращения Земли и неравномерного распределения масс в земной коре, но достаточно хорошо ( с точностью до нескольких сотен метров) представляется эллипсоидом вращения, имеющим полярное сжатие 1:293,3 (эллипсоид Красовского).

Тем не менее до самого недавнего времени считалось вполне установленным фактом, что этот небольшой дефект медленно, но верно нивелируется из-за так называемого процесса восстановления гравитационного (изостатического) равновесия, начавшегося примерно восемнадцать тысяч лет назад.

Но совсем недавно Земля опять начала сплющиваться.

Геомагнитные измерения, которые с конца 70-х годов стали неотъемлемым атрибутом научно-исследовательских программ спутникового наблюдения, стабильно фиксировали выравнивание гравитационного поля планеты. В общем, с точки зрения мейнстримовских геофизических теорий гравитационная динамика Земли представлялась вполне прогнозируемой, хотя, разумеется, как внутри мейнстрима, так и за его рамками существовали многочисленные гипотезы, по-разному интерпретирующие средне- и долгосрочные перспективы этого процесса, а равно и то, что происходило в прошлой жизни нашей планеты. Довольно большой популярностью пользуется сегодня, скажем, так называемая пульсационная гипотеза, согласно которой Земля периодически то сжимается, то расширяется; есть сторонники и у "контракционной" гипотезы, постулирующей, что в долгосрочном плане размеры Земли будут уменьшаться. Нет единства у геофизиков и по части того, в какой фазе находится сегодня процесс послеледникового восстановления гравитационного равновесия: большинство специалистов полагают, что он довольно близок к завершению, но имеются и теории, утверждающие, что до его конца еще далеко или что он уже прекратился.

Тем не менее, несмотря на обилие разночтений, до конца 90-х годов прошлого века у ученых все-таки не было сколько-нибудь веских причин сомневаться в том, что процесс послеледникового гравитационного выравнивания живет и здравствует. Конец научному благодушию пришел довольно внезапно: потратив несколько лет на проверку и перепроверку результатов, полученных с девяти различных спутников, двое американских ученых, Кристофер Кокс из компании Raytheon и Бенджамен Чао, геофизик Годдардовского центра управления космическими полетами NASA, пришли к удивительному выводу: начиная с 1998 года, "экваториальный охват" Земли (или, как окрестили эту размерность многие западные СМИ, ее "толщина") вновь стал увеличиваться.
Зловещая роль течений океана.

Статья Кокса и Чао, в которой декларируется "обнаружение крупномасштабного перераспределения массы Земли", была опубликована в журнале Science в начале августа 2002 года. Как отмечают авторы исследования, "длительные наблюдения за поведением гравитационного поля Земли показали, что у выравнивавшего его послеледникового эффекта в последние несколько лет неожиданно возник более мощный противник, примерно вдвое превосходящий его по силе гравитационного воздействия". Благодаря этому "таинственному противнику" Земля вновь, как и в последнюю "эпоху Великого Обледенения", начала сплющиваться, то есть с 1998 года в районе экватора происходит нарастание массы вещества, тогда как из полярных зон идет его отток.

Прямых измерительных методик, позволяющих обнаружить этот феномен, у земных геофизиков пока нет, поэтому в своей работе им приходится пользоваться косвенными данными, прежде всего результатами сверхточных лазерных замеров изменений траекторий орбит спутников, происходящих под влиянием колебаний гравитационного поля Земли. Соответственно, говоря о "наблюдаемых перемещениях масс земного вещества", ученые исходят из предположения о том, что именно они ответственны за эти локальные гравитационные колебания. Первые попытки объяснения этого странного явления и предприняты Коксом и Чао.

Версия о каких-либо подземных явлениях, например перетекании вещества в земной магме или ядре, выглядит, по мнению авторов статьи, довольно сомнительной: для того, чтобы подобные процессы возымели хоть сколько-нибудь значимый гравитационный эффект, якобы требуется куда более длительное время, чем смехотворные по научным меркам четыре года. В качестве возможных причин, обусловивших утолщение Земли по экватору, они называют три основных: океаническое воздействие, таяние полярных и высокогорных льдов и некие "процессы в атмосфере". Впрочем, последняя группа факторов ими также сразу отметается - регулярные замеры веса атмосферного столба не дают никаких оснований для подозрений в причастности тех или иных воздушных явлений к возникновению обнаруженного гравитационного феномена.

Далеко не столь однозначной представляется Коксу и Чао гипотеза о возможном влиянии на экваториальное вздутие процесса таяния льда в арктической и антарктической зонах. Этот процесс как важнейший элемент пресловутого глобального потепления мирового климата, безусловно, в той или иной степени может быть ответственен за перенос значительных масс вещества (прежде всего воды) от полюсов к экватору, но сделанные американскими исследователями теоретические расчеты показывают: для того, чтобы он оказался определяющим фактором (в частности, "перекрыл" последствия тысячелетнего "роста положительного рельефа"), размерность ежегодно растапливаемой с 1997 года "виртуальной глыбы льда" должна была бы составлять 10х10х5 километров! Никаких эмпирических свидетельств того, что процесс таяния льда в Арктике и Антарктике за последние годы мог принять подобные масштабы, у геофизиков и метеорологов не имеется. Согласно самым оптимистическим оценкам, совокупный объем растаявших льдин как минимум на порядок меньше этого "суперайсберга", следовательно, даже если он и оказал какое-то влияние на прирост экваториальной массы Земли, едва ли это влияние могло быть столь существенным.

В качестве наиболее вероятной причины, обусловившей внезапное изменение гравитационного поля Земли, Кокс и Чао рассматривают сегодня океаническое воздействие, то есть все тот же перенос больших объемов водной массы Мирового океана от полюсов к экватору, который, однако, связан не столько с быстрым таянием льда, сколько с некими не вполне объяснимыми резкими флуктуациями океанических течений, происходящими в последние годы. Причем, как полагают специалисты, главный кандидат на роль возмутителя гравитационного спокойствия - Тихий океан, точнее, циклические перемещения огромных водных масс из его северных регионов в южные.

Если данная гипотеза окажется верной, человечество в весьма скором будущем может столкнуться с очень серьезными изменениями мирового климата: зловещая роль океанических течений хорошо известна всем мало-мальски знакомым с основами современной метеорологии (чего стоит один Эль-Ниньо). Правда, вполне логичным выглядит и предположение, что внезапное разбухание Земли по экватору - следствие уже идущей полным ходом климатической революции. Но, по большому счету, толком разобраться по свежим следам в этом клубке причинно-следственных взаимосвязей пока едва ли представляется возможным.

Очевидную нехватку понимания происходящих "гравитационных безобразий" прекрасно иллюстрирует небольшой фрагмент интервью самого Кристофера Кокса корреспонденту службы новостей журнала Nature Тому Кларку: "По моему мнению, сейчас можно с высокой степенью определенности (здесь и далее выделено нами. - 'Эксперт') говорить лишь об одном: 'проблемы с весом' нашей планеты, вероятно, носят временный характер и не являются прямым результатом человеческой деятельности". Однако, продолжая эту словесную эквилибристику, американский ученый тут же еще раз предусмотрительно оговаривается: "Постровидимому, рано или поздно все вернется 'к норме', но, возможно, мы заблуждаемся на сей счет".



кто впервые вычислил размер земного шара:Первые измерения размеров Земли, её окружности Совершая путешествия из г. Александрии на юг, в г. Сиену (теперь Асуан), люди замечали, что там летом в тот день, когда солнце бывает всего выше на

кто впервые вычислил размер земного шара