Как решить дробное уравнение калькулятор


Решение задач по математике онлайн


Калькулятор онлайн.
Решение показательных уравнений.

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями. т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы владелец сайта, блога, группы в социальных сетях, то вы можете разместить эту форму у себя на сайте и пользователи смогут решать задачи на Вашем сайте без перехода по внешним ссылкам.
Такую возможность предоставляет Партнёрская программа по решению задач MathSolution.ru абсолютно бесплатно.

Введите показательное уравнение
Решить уравнение У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.

Я не хочу ждать !

Немного теории.

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m - любые действительные числа. Тогда
1) a n a m = a n+m

4) (ab) n = a n b n

7) a n > 1, если a > 1, n > 0

8) a n m. если a > 1, n n > a m. если 0 x. где a - заданное положительное число, x - переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = a x. где а — заданное число, a > 0, \( a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leq 0\), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е.

уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x. 576 = 24 2. то уравнение можно записать в виде 8 x • 3 x = 24 2. или в виде 24 x = 24 2. откуда х = 2.
Ответ х = 2

Решить уравнение 3 х + 1 - 2 • 3 x - 2 = 25
Вынося в левой части за скобки общий множитель 3 х - 2. получаем 3 х - 2 (3 3 - 2) = 25, 3 х - 2 • 25 = 25,
откуда 3 х - 2 = 1, x - 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3 х = 7 х
Так как \( 7^x \neq 0 \). то уравнение можно записать в виде \( \frac<3^x><7^x> = 1 \), откуда \( \left( \frac<3><7> \right) ^x = 1 \), х = 0
Ответ х = 0

Решить уравнение 9 х - 4 • 3 х - 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 - 4t - 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2 х + 1 + 2 • 5 x - 2 = 5 х + 2 х - 2
Запишем уравнение в виде
3 • 2 х + 1 - 2 x - 2 = 5 х - 2 • 5 х - 2. откуда
2 х - 2 (3 • 2 3 - 1) = 5 х - 2 ( 5 2 - 2 )
2 х - 2 • 23 = 5 х - 2 • 23
\( \left( \frac<2><5> \right) ^ = 1 \)
x - 2 = 0
Ответ х = 2

Решить уравнение 3 |х - 1| = 3 |х + 3|
Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х - 1) 2 = (х + 3) 2. откуда
х 2 - 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1



как решить дробное уравнение калькулятор:Решение задач по математике онлайн Калькулятор онлайн. Решение показательных уравнений. Этот математический калькулятор онлайн поможет вам решить показательное уравнение . Программа для

как решить дробное уравнение калькулятор